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PER SPECT I V E

Diverse perennial circular forage systems are needed to foster
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Abstract
Prevailing agricultural systems dominated by annual crop monocultures, and
the landscapes that contain them, lack resilience and multifunctionality.
They are vulnerable to extreme weather events, contribute to degradation of
soil, water, and air quality, reduce biodiversity, and negatively impact
human health, social engagement, and equity. To achieve greater resilience,
stability, and multiple ecosystem services therein, and to improve socio-
economic outcomes, we propose a practical framework to gain multi-
functionality at multiple scales. This framework includes forages within
agroecosystems that have the essential structural features of diversity,
perenniality, and circularity. These three structural features are associated
with increased resilience, stability, and provision of several ecosystem
services, which in turn improve human health and socioeconomic outcomes.
This framework improves understanding of, and access to, tools and
materials for promoting the adoption of diverse circular agroecosystems
with perennial forages. Application of this framework can result in land
transformations that solve sustainability challenges in agriculture if policy,
economic, and social barriers can be overcome by a transdisciplinary process
of equitable knowledge production.
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INTRODUCTION

Agricultural production is faced with the challenges of
adapting to climate change and socioeconomic disrup-
tions, providing ecosystem services, and reducing pollu-
tion while simultaneously fostering human health and
supporting social and economic well‐being and inclusion.
Increasing climate variability calls for more resilient and
stable agricultural systems. Intensification of agriculture
during the past 70 years has increased yield per unit of
land by promoting low‐diversity, high‐disturbance crop-
ping systems that depend on high amounts of external
inputs such as fertilizers, irrigation, and germplasm with
greater harvest index and shorter life cycle
(Cassman, 1999). Federal policies such as farm subsidies,
credit, and insurance programs have encouraged intensifi-
cation. In spite of yield benefits, there are also many
undesirable outcomes, including degradation of soil,
water, and air quality; loss of biodiversity; negative
impacts on human health; and exclusion of marginalized
populations (Ramankutty et al., 2018). Thus, critics of
intensification call for a redesign of agricultural systems
and the landscapes in which they occur (Bommarco
et al., 2013) supported by policies that do not disin-
centivize such innovation.

Mitigating the impact of agricultural intensification
requires new frameworks for research, production, commer-
cialization, and policy. Examples of proposed frameworks
include “organic,” “sustainable,” “natural,” “regenerative,”
“carbon smart,” and “ecological” agriculture. Often these
frameworks are defined by expected outcomes rather than
structural features of the system, and result in confusion
among farmers, researchers, policymakers, and consumers.

Moreover, prevailing conventional approaches to research
and outreach can themselves become barriers to adoption of
innovation. Therefore, the goal of this perspective paper is to
describe a straightforward and practical framework for
fostering greater benefits and fewer undesired impacts of
agriculture. This framework is based on agroecosystems
containing forages that have the structural features of
diversity, perenniality, and circularity, and use of trans-
disciplinary approaches to foster transitions to these systems.

Diverse perennial circular forage systems (DPCFSs),
an agroecosystem type described below, offer a more
sustainable alternative to input intensification approaches.
Broad‐scale adoption of DPCFS will result in these benefits
accruing at the community, society, and global scales.
However, government policies such as farm subsidies,
financial credits, and insurance programs frequently disin-
centivize change. Current “linear” economies (as opposed
to “circular,” see below) result in negative externalities,
market failures, and missed markets. Additionally, many
social barriers exist, including farm labor structures, scales
of production, producer concerns about market reliability,
and access to information. Farmer and consumer values
and attitudes can also present barriers to change.

In this paper, we present a nonsystematic integrative
literature review (Snyder, 2019) to synthesize the literature
on the linkages between structural features of agroecosys-
tems (diversity, perenniality, and circularity) and the system
outcomes (resilience, ecosystem services, and socioeconomic
benefits). We also review the related socioeconomic and
political barriers to adoption and alternative enabling
conditions for a landscape transition from currently prevail-
ing agroecosystem to DPCFS that emerge from a trans-
disciplinary process (Figure 1).

FIGURE 1 Conceptual framework: Structural features of agroecosystems (diversity, perenniality, circularity) are linked to environmental
(resilience and ecosystem services) and socioeconomic (health, inclusion, and societal benefits) outcomes. A landscape transition from prevailing
agroecosystems to diverse, perennial, circular, forage systems requires overcoming socioeconomic and political barriers and creating enabling
conditions through a transdisciplinary process that includes disciplinary scientists in agronomy (Agron), ecology (Ecol), animal science (An Sci),
sociology (Sociol), economics (Econ), political science (Pol Sci), farmers (Farm), specialists from non‐government organizations (NGOs), policy
makers (Pol mk), consumers (Cons), and industry personnel (Indus).

124 | PICASSO ET AL.



DIVERSE PERENNIAL CIRCULAR
FORAGE SYSTEMS

Agroecosystems are units of agricultural productivity
composed of physical, biological, socioeconomic, and
cultural subsystems interacting as a community within a
larger framework of human‐led agricultural processes
(Cordoba et al., 2020). Agroecology, as a set of agricultural
practices that mimic natural ecological processes to
improve agricultural sustainability, has gained global
consensus as a viable approach to sustainability gains.
Multiple pathways toward greater sustainability in agricul-
ture are possible through agroecology because the concept
applies across diverse subsystems types and the varied ways
in which they function as communities. Transitions to the
agroecosystem approach to increased agricultural sustain-
ability include political, social, economic, environmental,
and technological shifts in policies, practices, and institu-
tions (Wenzel et al., 2020). Crop‐livestock agroecosystems
provide food, income, and risk reduction to farmers and
contribute to agricultural value chains. Although the global
environmental footprint of livestock production and
consumption is a concern, a diversity of forages grown in
well‐managed agroecosystems have been shown to provide
multiple benefits not achievable through conventional
intensification of agriculture (Notenbaert et al., 2021; Rao
et al., 2015). Forage crops and pastures play an important
role in sustainable agriculture because of their value
as a feed for livestock and for their roles in biodiversity,
wildlife habitat, climate change mitigation, and soil quality.
Because they are highly adaptable to a wide range of
environmental and grazing/harvest conditions, forages are
an essential component in agroecosystem‐based approaches
to agricultural suitability across landscapes.

Agricultural landscapes vary in climate, soils, infra-
structure, demographics, and other characteristics.
Therefore, innovative agricultural systems must be
applicable across a wide range of agricultural land-
scapes to address the current challenges at broader
scales and to achieve desired outcomes across socio-
economic strata. We argue that agroecosystem ap-
proaches are the most effective approach across variable
landscapes, and that forage agroecosystems share three
common structural features: diversity, perenniality, and
circularity. These three structural features are linked to
desirable system outcomes like resilience, ecosystem
services, and socioeconomic benefits, as described in the
next section. Therefore, a landscape transformation
toward DPCFS can achieve sustainability and multi-
functionality. Examples of DPCFS systems adaptable
across a wide range of landscape types are those that
include crop rotations with perennial forages (leys),
living mulches, intercropping, and grass–legume pas-
tures. Although DPCFSs have been proposed for
marginal, highly erodible lands (Awasthia et al., 2017),
we believe that there is realistic opportunity to expand
them to highly productive lands as well. Through our
proposed framework, we recommend focus on forages
and crops (rather than specific livestock species) to
better foster adoption of DPCFS. The result will be
the transformation of agricultural landscapes toward
greater sustainability. Moreover, we seek to expand the

analysis of farm productivity beyond specific products
such as “grains, dairy, or meat” toward broader
holistic metrics of production like the private and
public benefits—economic, environmental, and social—
of increased resilience and biodiversity.

SYSTEM OUTCOMES AND THEIR
LINK WITH STRUCTURAL
FEATURES

A review of definitions of the desirable relevant system
outcomes is summarized below:

• Stability and resilience: A key challenge in agriculture
is designing agricultural systems that are productive,
stable, and resilient in the face of climate change and
other disruptions, while simultaneously promoting
farmer profitability, soil health, clean air and water,
and biodiversity (Howden et al., 2007). Stability is the
minimal variability of production despite normal
climate fluctuations, while resilience is the ability of a
system to withstand and recover from a perturbation
or crisis (Bowles et al., 2020; Picasso et al., 2019;
Urruty et al., 2016). Resilient agricultural systems
remain productive under extreme events (e.g., drought
or flood). Stability, resilience, and productivity do not
necessarily covary, so understanding each variable is
relevant for adaptation to climate change (Picasso
et al., 2019; Sanford et al., 2021).

• Ecosystem services are the benefits that society receives
from ecosystems or agroecosystems, regardless of
their market value (Millennium Ecosystem Assess-
ment, 2003). These benefits include provisioning (e.g.,
food, drinking water), regulating (e.g., pollination,
erosion control), cultural (e.g., recreation, esthetics),
and/or supporting (e.g., nutrient cycling, soil forma-
tion). Concerns about the loss of ecosystem services
from farms due to intensification (Wagner et al., 2021)
have given rise to calls for an alternative approach.
Ecological or sustainable intensification increases
productivity and ecosystem services by relying on
diversification and greater resource use efficiency
within agroecosystems (Franzluebbers et al., 2020;
Samways et al., 2020; Tittonell, 2014). For example,
soil health and resilience of agricultural systems
depend on building or maintaining soil organic carbon
(SOC), and improved agricultural management can
increase sequestration of atmospheric CO2 and con-
tribute to climate change mitigation. Markets are
responding to consumers' interest in low‐carbon
solutions, and an increasing number of food corpora-
tions are setting targets to reduce their carbon
emissions. On a per‐area basis, in spite of benefits for
yield, high‐input agricultural systems result in higher
global warming potential, higher risk for acidification,
more eutrophication, and more toxicity to humans
compared to low‐input systems (Darre et al., 2020;
Nemecek et al., 2011, 2015; Picasso et al., 2014).

• Human health: Negative health outcomes and negative
societal impacts attributed to agricultural pollution in
the United States support the development of more
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sustainable practices (Giannadaki et al., 2018), includ-
ing diverse perennial systems. There are clear and
critical relationships between land use/land cover and
environmental and human health (Peters et al., 2016;
Temme et al., 2013). We can improve environmental
sustainability and global carrying capacity by under-
standing and managing these relationships (Willett
et al., 2019), and by designing agricultural systems for
better human health outcomes.

• Social inclusion: Structural inequalities take many forms.
In the United States, for instance, they pose barriers to
farmers of color and women farmers, while privileging
White male farmers. Although people of color account
for over a quarter of the US population, they account
for less than 3% of US landowners and only 4% of all
owner‐operators (Horst & Marion, 2019). Farmers of
color are disproportionately tenant farmers and dis-
proportionately low‐resource farmers. Women account
for fewer than 25% of primary farm operators, although
they are more than 51% of the US population, and
farms operated by women earn 40% less than farms
operated by men (Fremstad & Paul, 2020). However,
both farmers of color and women farmers are dis-
proportionately represented in sustainable farming
systems. While it is important not to reify the relation-
ship between marginalized groups and more sustainable
practices, this existing investment in sustainable systems
does present interesting opportunities. In other countries,
farmers from ethnic minority groups, farmers who are
lower caste, and those from subsistence farming
communities may face similar barriers as those described
above. Research around the world, and across many
decades, indicates that producers who are women and
those who have less access to economic capital are nearly
universally at a disadvantage in accessing the resources
central to conventional agricultural success. It is possible
that greater social investment in sustainable systems,
such as DPCFS, could benefit groups that historically
have had less access to agricultural innovations.

• Economic well‐being: Environmentally sustainable agricul-
tural systems will be adopted only if they are economically
viable (Baumgart‐Getz et al., 2012). Consequently, it is
necessary to assess the economic value of these systems
narrowly (short‐run, private, and on‐farm benefits) and
broadly (long‐run, public, or off‐farm benefits). However,
there is lack of actionable estimates for how environ-
mental conditions evolve over time in response to varying
production practices (Stevens, 2018). In spite of the
knowledge gap, there is evidence that transitioning to
more environmentally sustainable systems can enhance
social and economic well‐being for farmers, rural
communities, and society at large (see, e.g., Jaenicke, 2016;
Lyson & Guptill, 2004; Marasteanu & Jaenicke, 2019;
Poulsen, 2017; Volkov et al., 2022).

Three main structural features of agroecosystems are
defined below, with their linkages to the system outcomes:

• Diversity: Diverse systems include multiple species of
crops and forages over time (crop rotations), spatial
diversity (e.g., intercropping multiple crop species), or
both. The ecosystem services' benefits of diversity are

well documented in both the ecology and agriculture
literature (Picasso, 2018). Diversity is a driver of
productivity and resilience (Oliver et al., 2015; Picasso
et al., 2011). Crop diversity also reduces disease, pest,
and weed pressure (Davis et al., 2012; Liebman
et al., 2008). Resilience is enhanced in diverse crop
rotations as a result of mechanisms such as the portfolio
effect, complementarity, functional redundancy, connec-
tivity, and so on (Biggs et al., 2012; Picasso et al., 2011).
Diversity increases the stability and/or resilience of long‐
term crop yields or cropping systems' performance in the
long term (Bowles et al., 2020; Degani et al., 2019; Li
et al., 2019; Sanford et al., 2021). Intercropping and
perennial mulches can increase productivity and profit-
ability (Berti et al., 2021; Osterholz et al., 2020), and
reduce the agricultural carbon footprint (Yu et al., 2015).
In addition, diverse systems increase biodiversity while
reducing risks due to weather and market change.

• Perenniality: Perennial forages or cropping systems
include perennial crops or cover in the crop rotation,
and can provide many benefits to the environment, such
as year‐round soil cover, carbon sequestration, and
nutrient retention for many years. Cropping systems
dominated by perennials have been positively associated
with pollinator habitat quality, soil and nutrient conser-
vation, and accrual of SOC (Sanford, 2014; Schulte
et al., 2017). Carbon input and soil organic carbon
increase is greater in rotations including perennials
compared with annual‐only rotations (King &
Blesh, 2018). Cropping systems that include perennials
increase soil root biomass, activity of soil flora and fauna,
and consequently increase SOC and total nitrogen.
Reducing tillage and increasing the amount of living soil
cover enhance soil structure, which improves water and
nutrient supply to crops, reduces runoff, and improves
surface water quality (Lal, 2020; Nunes et al., 2018).
Perenniality also reduces the interannual variability of
yields and increases yield stability. Perennial forages such
as alfalfa (Medicago sativa L.) can provide several
regulating services, such as reduced soil erosion and
nutrient losses to water (Osterholz et al., 2019).

• Circularity: Circular systems recycle nutrients rather than
moving them off‐field and off‐farm to the atmosphere,
surface waters, and groundwater, where they can become
sources of pollution (Jurgilevich et al., 2016). Cropping
systems integrating legumes and livestock in diverse
perennial circular systems, for example, add to the
system through atmospheric N2 fixation by legumes and
by plant root uptake of nutrients deposited in manure
and urine. Similarly, nutrients in the forage not
consumed by livestock are reutilized by the crops
themselves. Crop–livestock systems with perennial crops
also enhance soil aggregate stability while reducing
erosion potential (Fultz et al., 2013).

SOCIOECONOMIC ‐POLITICAL
CONTEXT

Disruptions to natural nutrient cycling currently challeng-
ing agriculture and human society are driven by economic,
political, and other social processes. Understanding and
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changing those processes will allow society to adapt to
resultant environmental impacts (Foster et al., 2010). We
argue that increased adoption of DPCFS can support
both mitigation of, and adaptation to, those disruptions
by providing new economic opportunities for farmers
while contributing to a more inclusive and equitable
agricultural system. Within environmental social sciences,
there exist several perspectives about how social, political,
and economic institutions react and respond to ongoing
ecological degradation and social inequity. For example, a
treadmill of production analysis predicts the internaliza-
tion of unintended ecological and social costs currently
unaccounted for in our economic production systems
(e.g., Gould et al., 2008). Critical political ecology
perspectives examine the internal contradictions of
modern economic processes and seek to redesign more
circular material economies (e.g., Foster et al., 2010).
Ecological modernization argues that the growing ubiq-
uity of environmental feedback results in the evolution of
social institutions of modernity to accommodate and
adapt to that feedback (Mol et al., 2009). In spite of
the tensions between interpretations of macro social
change and conflict, our pragmatic approach to landscape
transformation focuses on mobilizing social, political, and
human capital (Flora et al., 2015) to identify and leverage
opportunities for transformation of agricultural systems.

Farmer value orientation influences decision‐making
regarding production system choices. In many cases, an
environmental and communitarian orientation predicts
greater openness to adopting sustainable agriculture
practices, while more individualistic and instrumental
values' orientation is associated with a preference for
conventional practices (Jackson‐Smith & Buttel, 2003).
Frameworks incorporating farmer knowledge networks
and adaptive decision‐making exist and provide crucial
insight into farmers' concerns regarding adoption of
these practices (Rosch‐McNally et al., 2017). Farmers
use various types of rationales in decision‐making
processes (Finan, 2011), and notions of personal identity
and what it means to be a “good farmer” can lend further
insight into social factors related to farmer motivations
for adopting sustainable practices (Mcguire et al., 2013).

The diversity in farmer histories and values is crucial
in developing effective policy and education that
encourage and support the adoption of sustainable
farming and land management practices (Mills
et al., 2017). Social characteristics such as race, gender
identity, age, and ableness are relevant in shaping those
histories and values (Taylor, 2018; Wright &
Annes, 2020). Transitioning to more environmentally
sustainable systems can enhance social and economic
well‐being for farmers, rural communities, and society at
large. For these synergistic benefits to be realized,
however, issues of social inclusion must be intentionally
addressed in the development of policy, lest we risk
perpetuating existing patterns of social privilege, often
invisible or ignored. The policy can be crafted in
a way that serves the particular interests and needs of
women and/or people of color. When diverse stake-
holders are included in policy development, the resulting
tools are more likely to be successfully implemented and

the primary desired outcomes achieved, while also
contributing to the equitable inclusion of people of color
and women.

TRANSDISCIPLINARITY FOR
TRANSITION TO DIVERSE
PERENNIAL CIRCULAR FORAGE
SYSTEMS

We argue that the transformation of agricultural
landscapes to provide more environmental, ecological,
and socioeconomic benefits and fewer undesirable
outcomes (compared to prevailing systems of agricul-
tural intensification) can be achieved through the
adoption of diverse perennial circular systems (among
others). Further, we argue that it is only through
transformative approaches to knowledge production,
decision‐making, and problem‐solving that we can
overcome the deeply entrenched political, cultural,
technical, and economic barriers to the adoption of
these systems. For us, a central component of that
approach is transdisciplinarity. We define transdiscipli-
narity as an ontological system that explicitly incorpo-
rates actors from a wide variety of disciplines (e.g.,
agronomy, sociology, economics), collaborating with
each other and nonacademic practitioners (i.e., farmers,
industry) and stakeholders (e.g., nongovernment orga-
nizations) to build a new, communally constituted,
knowledge system (Halvorsen et al., 2015).

Transdisciplinarity processes are used to identify and
address complex real‐world problems by integrating multi-
ple perspectives and understandings into new, emergent,
and shared understandings. Additionally, transdisciplinary
teams seek to generate this knowledge in ways that
empower those who have historically been closed out of
knowledge production and decision‐making (Hirsch Ha-
dorn et al., 2006). As a “transformational scientific field,”
transdisciplinarity is regarded as having the power to bridge
knowledge and action by producing deeper understanding
of issues (systems knowledge), determining more inclusive
ways to make decisions, and knowledge of ways and means
of realizing those decisions (Marshall et al., 2018).

CONCLUSIONS

Diverse perennial circular forage systems such as those
with crop rotations that include perennial forages,
living mulches, intercropping, or grass–legume pas-
tures can foster resilience to climate change and
provide multiple ecosystem services and socio-
economic benefits in agricultural landscapes. Policy
and economic measures can help promote these
systems by overcoming social, economic, and policy
barriers with the goal of social inclusion, economic
well‐being, and human health. A transdisciplinary
approach involving researchers from a broad range
of disciplines and diverse stakeholders is needed to
engage in social change to make this needed landscape
transformation happen.
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